Abstract

Metamodeling techniques have been developed and used for years in engineering reliability analysis involving expensive response simulations. In practical tunnel engineering problems where finite element (FE) simulations are required, the limited state/performance functions are in general implicit and nonlinear, and it is difficult to apply traditional gradient-based or sampling-based reliability methods, especially for large-scale problems. There is a need to develop accurate and efficient metamodels for practical tunnel engineering applications. In this paper, a metamodeling technique for reliability analysis of tunnels was studied based on augmented radial basis functions (RBFs). With a relatively small size of samples, the RBFs were used to create accurate approximate functions for different types of responses including linear and higher-order nonlinear functions. With the RBF-based metamodel constructed to express a limit state/performance function, Monte Carlo simulations (MCS) were applied to evaluate failure probability. The failure probability and reliability index obtained using the RBF-based metamodeling method were found to have good accuracy with a reasonable number of sample points. The reliability analyses of two existing tunnel examples showed that the augmented RBF metamodeling approach was efficient and effective for tunnel engineering problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.