Abstract

Free-space optical communication systems are affected by turbulent atmosphere. The atmospheric transmission is affected by absorption, scattering and turbulence. In this paper, the effects of absorption and scattering are taken into account using Beer’s law and the effects of turbulence are considered in calculating the average intensity distribution. An analytical expression for the average intensity distribution of a partially coherent flat-topped array (PCFTA) beam in turbulent atmosphere is derived based on the extended Huygens–Fresnel principle. The average intensity, power in bucket, signal to noise ratio, and bit error rate of this kind of beam are investigated in details. It is shown by numerical results and analytical methods that the average intensity and link parameters of PCFTA beams change during propagation and these changes are dependent upon both source parameters and weather conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call