Abstract

Designing buildings with a very high safety factor is one of the main purposes of a civil engineer. Since in the structural design process, there are several no-confidence; we cannot achieve a perfect safe design. In these cases, we face amount of the probability of failure. So the theory of reliability used to assess the uncertainty. This theoretical for expression the safety of a system uses the reliability index, so it can be said that the calculation of reliability index is an important part of the theory. By the theory of structural reliability, uncertainties arising from the nature of the statistical parameters can be written mathematical equations and considerations of safety and performance of the structure into the design process. Since classical methods are not capable of solving complex functions, metaheuristic algorithms used. In fact, a metaheuristic algorithm is a set of concepts, which significantly able to solve many complex issues, which they can reach an optimal solution in a short time. In this paper, the particle swarm algorithm combined with Firefly and to assess the reliability theory has been used. Reliability index is calculated by searching the shortest distance between the origin and the closed point of Limit State Surface in the Standard normalized space.Mathematical and engineering studies on the issues indicated; Hybrid Firefly and particle swarm algorithm are with great accuracy and speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.