Abstract
AbstractStandby redundancy has been extensively applied to critical engineering systems to enhance system reliability. Researches on reliability evaluation for standby systems focus more on systems with binary‐state elements. However, multi‐state elements with different performances have played a significant role in engineering systems. This paper presents an approach for reliability analysis of standby systems composed of multi‐state elements with constant state transition rates and absorbing failure states. The approach allows modelling different standby systems beyond cold, warm and hot ones by taking into account differences in possible maintenance of elements in standby and operation modes and dependence of elements' operational behavior on their initial state at the time of activation. An iterative algorithm for reliability evaluation based on element state probabilities is suggested. Illustrating examples of evaluating reliability of different types of homogeneous and heterogeneous standby systems are demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.