Abstract

Phased mission systems (PMSs) have wide applications in engineering practices, especially in aerospace industry such as man-made satellite and spacecraft. To achieve high reliability in a PMS, certain critical parts in the system are designed to have a redundant architecture, such as cold standby (structural or functional). State-space models such as Markov processes have been widely used in previous studies to evaluate the reliabilities of these systems. But in practice, many real systems consist of mechanical components or mechatronics whose lifetime follow non-exponential distributions like the Weibull distribution. In this type of system, the Markov process is not capable of modeling the system behavior. In this paper, the SMP (Semi-Markov Process) is applied to solve the problem that the components’ lifetime in dynamic systems follows non-exponential distributions. An approximation algorithm for the SMP is proposed to assess the reliability of the PMSs consisting of non-exponential components. Furthermore, the accuracy and calculation efficiency of the approximation algorithm are explored. At last, the reliability assessment of a complex multi-phased altitude and orbit control system (AOCS) in a man-made satellite is presented to illustrate the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.