Abstract
Mechanical system reliability analysis constitutes a primary research focus in the field of engineering. This study aims to address the issue of complex mechanical systems with intricate mechanisms and nonlinear reliability equations that are challenging to solve. To this end, we present a reliability analysis and optimization methodology that merges the response surface and sensitivity analysis methods. A comprehensive formation of reliability assessment and optimization of complex mechanical systems is achieved by creating a response surface model to fit the complex state function and solving the reliability parameters, followed by an error sensitivity analysis to determine the mechanical system’s reliability adjustment strategy. Finally, these methods are applied to a cylindrical material transport device to preliminarily realize the reliability assessment and average reliability optimization goals. The study’s findings may offer a theoretical framework and research opportunities to evaluate and enhance the reliability of intricate mechanical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.