Abstract
In this paper, we propose a scheme to improve the performance of subspace learning by using a pattern (data) selection method as preprocessing. Generally, a training set for subspace learning contains irrelevant or unreliable samples, and removing these samples can improve the learning performance. For this purpose, we use pattern selection preprocessing which discriminates decision boundary/non-boundary patterns by class information and neighborhood property, and removes boundary patterns. Performance improvement by pattern selection is investigated for classification and visual tracking problems, and compared with those of the previous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.