Abstract

Abstract In fatigue problems, an accurate estimation of the propagation direction is important for life prediction. We identify the most relevant factors that affect the crack orientation during the propagation stage of fretting fatigue cracks, arising from complete contacts. Contrary to what initially expected, parameters such as normal load, cyclic bulk load, etc. do not have a noticeable influence on the orientation. However the relative Young's moduli of indenter/specimen materials, the indenter width and the surface coefficient of friction are the most influencing factors. Analyses are performed through the extended finite element method (X-FEM) and an orientation criterion for non-proportional loading proposed by the authors. Experimental fretting fatigue tests confirm the predicted trends. An explanation of this behaviour is also given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call