Abstract

Passivation of titanium alloy dental meshes cleans their surface and forms a thin layer of protective oxide (TiO2) on the surface of the material to improve resistance to corrosion and prevent release of ions to the physiological environment. The most common chemical agent for the passivation process of titanium meshes is hydrochloric acid (HCl). In this work, we introduce the use of Piranha solution (H2SO4 and H2O2) as a passivating and bactericidal agent for metallic dental meshes. Meshes of grade 5 titanium alloy (Ti6Al4V) were tested after different treatments: as-received control (Ctr), passivated by HCl, and passivated by Piranha solution. Physical-chemical characterization of all treated surfaces was carried out by scanning electron microscopy (SEM), confocal microscopy and sessile drop goniometry to assess meshes’ topography, elemental composition, roughness, wettability and surface free energy, that is, relevant properties with potential effects for the biological response of the material. Moreover, open circuit potential and potentiodynamic tests were carried out to evaluate the corrosion behavior of the differently-treated meshes under physiological conditions. Ion release tests were conducted using Inductively Coupled Plasma mass spectrometry (ICP-MS). The antibacterial activity by prevention of bacterial adhesion tests on the meshes was performed for two different bacterial strains, Pseudomonas aeruginosa (Gram-) and Streptococcus sanguinis (Gram+). Additionally, a bacterial viability study was performed with the LIVE/DEAD test. We complemented the antibacterial study by counting cells attached to the surface of the meshes visualized by SEM. Our results showed that the passivation of titanium meshes with Piranha solution improved their hydrophilicity and conferred a notably higher bactericidal activity in comparison with the meshes passivated with HCl. This unique response can be attributed to differences in the obtained nanotextures of the TiO2 layer. However, Piranha solution treatment decreased electrochemical stability and increased ion release as a result of the porous coating formed on the treated surfaces, which can compromise their corrosion resistance. Framed by the limitations of this work, we conclude that using Piranha solution is a viable alternative method for passivating titanium dental meshes with beneficial antibacterial properties that merits further validation for its translation as a treatment applied to clinically-used meshes.

Highlights

  • The amount of bone is paramount to predictably achieve success and long-term survival of implant-supported rehabilitations

  • We studied the effects of Piranha solution treatment on surface physical-chemical properties, chemical degradation and antimicrobial activity against Gram-positive and Gram-negative bacteria

  • Piranha passivation: The meshes were immersed in a solution of Piranha, which is a mixture of sulfuric acid 96% (v) and a 50:50 ratio of hydrochloric acid (HCl) 20% (v) and hydrogen peroxide 30% (v) for 2 h

Read more

Summary

Introduction

The amount of bone is paramount to predictably achieve success and long-term survival of implant-supported rehabilitations. Proper amount of bone is needed to go along with the esthetical and functional prosthetic design, variable discrepancies in the available bone are seldom found This may occur because of prolonged tooth loss, trauma, injury or bone disease and resection, conducting to a horizontal, vertical or combined bone defect (Siebert). Techniques involve placing a mechanical barrier to protect the blood clot and to isolate the bony defect from the surrounding connective and epithelial tissue invasion. This space is needed to allow the osteoblasts to access the space intended for bone regeneration [5,6]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.