Abstract

Simple SummaryHere we introduce a new feature selection algorithm DTA, which selects important, non-redundant, and relevant features from diverse omics data. DTA selects non-redundant features by maximizing the similarity between each patient pair by an approximate k-cover algorithm. We successfully applied this algorithm to three different biological problems: (a) disease to healthy sample classification, (b) multiclass classification of different disease samples, and (c) disease subtypes detection. DTA outperformed other feature selection techniques in the binary classification of healthy and disease samples and multiclass classification of various diseases. It also improved the performance of a subtype detection algorithm by selecting the important features for few cancer types.Biologists seek to identify a small number of significant features that are important, non-redundant, and relevant from diverse omics data. For example, statistical methods such as LIMMA and DEseq distinguish differentially expressed genes between a case and control group from the transcript profile. Researchers also apply various column subset selection algorithms on genomics datasets for a similar purpose. Unfortunately, genes selected by such statistical or machine learning methods are often highly co-regulated, making their performance inconsistent. Here, we introduce a novel feature selection algorithm that selects highly disease-related and non-redundant features from a diverse set of omics datasets. We successfully applied this algorithm to three different biological problems: (a) disease-to-normal sample classification; (b) multiclass classification of different disease samples; and (c) disease subtypes detection. Considering the classification of ROC-AUC, false-positive, and false-negative rates, our algorithm outperformed other gene selection and differential expression (DE) methods for all six types of cancer datasets from TCGA considered here for binary and multiclass classification problems. Moreover, genes picked by our algorithm improved the disease subtyping accuracy for four different cancer types over state-of-the-art methods. Hence, we posit that our proposed feature reduction method can support the community to solve various problems, including the selection of disease-specific biomarkers, precision medicine design, and disease sub-type detection.

Highlights

  • Omics data usually comprise thousands of features; most of these features are redundant, irrelevant, or noisy

  • To perform the survival analysis, we downloaded the clinical data of the patients from the The Cancer Genome Atlas (TCGA)

  • We present an algorithm that showed a remarkable improvement over existing feature selection techniques for disease classification and subtype detection problems

Read more

Summary

Introduction

Omics data usually comprise thousands of features; most of these features are redundant, irrelevant, or noisy. Typical RNA-seq measurements catalog the expression of thousands of transcripts; most of them are redundant (i.e., highly correlated) or noisy. Due to the experimental costs, the number of samples available is lower than the number of features, making the traditional machine learning and statistical algorithms overfit the biological data. Another problem is the lack of control/normal samples; this is mainly because there are fewer chances to collect data from healthy patients. Selecting a small number of relevant and non-redundant features among the complete set of features is a significant research problem

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.