Abstract

Source to sink size ratio, i.e.: the relative abundance of photosynthetically active organs (leaves) with regards to photosynthate demanding organs (mainly bunches), is widely known to be one of the main drivers of grape oenological quality. However, due to the difficulty of remote sink size estimation, Precision Viticulture (PV) has been mainly based on within-field zone delineation using vegetation indices. This approach has given only moderately satisfactory results for discriminating zones with differential quality. The aim of this work was to investigate an approach to delineate within-vineyard quality zones that includes an estimator of sink size in the data-set. The study was carried out during two consecutive seasons on a 4.2 ha gobelet-trained cv. ‘Tempranillo’ vineyard. Zone delineation was performed using Normalized Difference Vegetation Index (NDVI), soil apparent electrical conductivity (ECa) and bunch number (BN) data. These variables were considered separately, in pairs, or the three altogether, using fuzzy k-means cluster analysis for combinations. The zones delineated based on single variables did not allow a sufficient discrimination for grape composition at harvest, NDVI being the only variable that by itself resulted in zones that to some extent differed in grape composition. On the contrary, when two variables were combined, discrimination in terms of grape composition improved remarkably, provided the sink size estimation variable (BN) was included in the combination. Lastly, the combination of the three variables yielded the best discriminating zoning, improving slightly on those provided by NDVI + BN and ECa + BN combinations. Thus, the relevance of including a variable related to sink size (in this case the number of bunches per plant) has been confirmed, which makes its consideration highly advisable for any PV work aiming at zone delineation for grape quality purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.