Abstract

The retinoblastoma tumor suppressor protein (pRB) is a known regulator of cell-cycle control; however, recent studies identified critical functions for pRB in regulating cancer-associated gene networks that influence the DNA damage response, apoptosis, and cell metabolism. Understanding the impact of these pRB functions on cancer development and progression in the clinical setting will be essential, given the prevalence of pRB loss of function across disease types. Moreover, the current state of evidence supports the concept that pRB loss results in pleiotropic effects distinct from tumor proliferation. Here, the implications of pRB loss (and resultant pathway deregulation) on disease progression and therapeutic response will be reviewed, based on clinical observation. Developing a better understanding of the pRB-regulated pathways that underpin the aggressive features of pRB-deficient tumors will be essential for further developing pRB as a biomarker of disease progression and for stratifying pRB-deficient tumors into more effective treatment regimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.