Abstract

Off-flavor in beer is often associated with the appearance of staling aldehydes. In this study, the factors amino acid concentration, carbohydrate concentration, Fe2+ concentration, and oxygen concentration were investigated in terms of their effect on the formation of carbonyl compounds during storage using response surface methodology. From all factors tested, only amino acid concentration and oxygen concentration promoted Strecker aldehyde formation during storage, while all other carbonyls measured were unaffected. A mixture of glucose/xylose, representing carbohydrate sources, as well as Fe2+ concentration were insignificant factors, though carbohydrate additions exhibited a significant role in the formation of 2-furfural. De novo formation of phenylacetaldehyde from phenylalanine during beer storage was observed using labeling experiments and a linear relationship between Strecker aldehydes formed and total packaged oxygen was identified. Capping beers with oxygen barrier crown corks and addition of 10 mg/L EDTA to beers effectively diminished Strecker aldehyde formation. Oxygen was additionally shown to significantly promote Strecker aldehyde formation during sweet wort production. A pathway for the reactive oxygen species-induced degradation of amino acids yielding Strecker aldehydes was proposed and was further scrutinized in buffered model solutions. The insignificant role of Fe2+ in the response surface experiments is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.