Abstract

Frailty represents a state of vulnerability and increases the risk of negative health outcomes, which is becoming an important public health problem. Over recent years, multiple independent studies have attempted to identify biomarkers that can predict, diagnose, and monitor frailty at the biological level. Among them, several promising candidates have been associated with frailty status including antioxidants and free radicals, and also inflammatory response biomarkers. In this review, we will summarize the more recent advances in this field. Moreover, the identification of scales and measurements to detect and quantify frailty in aged mice, as well as the generation of mouse models, have started to unravel the underlying biological and molecular mechanisms of frailty. We will discuss them here with an emphasis on murine models with overexpression of glucose-6-phosphate dehydrogenase and loss of function of superoxide dismutase and interleukin 10, which reveal that altered oxidative stress and inflammation pathways are involved in the physiopathology of frailty. In summary, we provide the current available evidence, from both human cohorts and experimental animal models, that highlights oxidative damage and inflammation as relevant biomarkers and drivers of frailty.

Highlights

  • The population in advanced countries is rapidly aging, and the proportion of people aged 60 and older is forecast to increase from 16% to 26% in 2050 and will triple from 5.8% to 15% in less-developed countries (World Health Organization, 2010)

  • Many independent studies have revealed multiple putative biomarkers associated with frailty status at biological level

  • This is mainly attributable to limitations such as the heterogeneity of the tools, scales, and/or indices used to identify frail individuals, the limitations of some of the scales, the different age, sex, and characteristics across different populations, small sample sizes, limited longitudinal clinical studies, or the different techniques and cut-offs used for biomarker measurement

Read more

Summary

Introduction

The population in advanced countries is rapidly aging, and the proportion of people aged 60 and older is forecast to increase from 16% to 26% in 2050 and will triple from 5.8% to 15% in less-developed countries (World Health Organization, 2010). A total of 2,518 German participants (aged ≥50 years; 845 fit, 1,463 pre-frail, and 210 frail) from the ESTHER Cohort Study were examined and increased d-ROM levels were strongly associated with frailty [56].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.