Abstract

BackgroundThe transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs.MethodshMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2–3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone.ResultsIntracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p < 0.05). Transfection efficiency was 45 ± 5 %. The viability of mHCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52–53 % in G2/M and 31–35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7.11-fold, p = 0.00056) which regulates the G1 phase. mHCN2-expressing hMSCs were attached and made anchorage-dependent connection with other cells without transmigration through a 12.7-μm thick Kapton® HN film with micromachined 1–3 μm diameter pores.ConclusionsmHCN2-expressing hMSCs preserved the major cell functions required for the generation of biological pacemakers: high viability, functional activity, but low proliferation rate through the arrest of cell cycle in the G1 phase. mHCN2-expressing hMSCs attached and grew on a Kapton® scaffold without transmigration, confirming the relevance of these cells for the generation of biological pacemakers.

Highlights

  • The transfection of human mesenchymal stem cells with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block

  • Efficiency of human mesenchymal stem cell (hMSC) transfection The efficiency of transfection with pIRES2-enhanced green fluorescent protein (EGFP) and pIRES2-HCN2-EGFP vectors was evaluated by fluorescence microscopy, RT-PCR, and enzyme-linked immunosorbent assay (ELISA)

  • The efficiency of plasmid incorporation has been confirmed by flow cytometry (Fig. 1b). mouse HCN2 (mHCN2) gene expression was confirmed by RT-PCR (Fig. 1c). mHCN2 protein expression was investigated by ELISA and expressed as ng/mg protein (Fig. 1d)

Read more

Summary

Introduction

The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. Some of these other means reported to provide biological pacing are virally delivered gene therapies aimed at increasing inward and or decreasing outward ionic currents during diastole, the use of transcription factors to convert mature myocytes into sinus node-like cells, and the use of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) converted into a pacemaker lineage [1,2,3,4,5] Another approach used mesenchymal stem cells (MSCs) and a self-inactivating HIV-based lentiviral vector for delivery of human potassium/sodium hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) into rabbit MSCs [6]. The MSCs have been shown to migrate away from the administration site within weeks of engraftment, making this a short-term solution This problem might solved by trapping HCN2-expressing and heart rhythmstimulating cells in cages/scaffolds preventing transmigration, preserving their long-term growth, sufficient nutrition and functional properties. Cell functions such as viability, stability, and renewal rate of HCN2-transfected cells are important factors

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.