Abstract
Sensitivity of human fibroblasts derived from Down's syndrome (DS) individuals (S-240, T-158, T-74, T-164) and normal donors (S-126, WA-1) to anticancer antibiotic—mitoxantrone (1,4-dihydroxy-5,8-bis((2-((2-hydroxy-ethyl)amino)ethyl)amino)-9,10-anthracenedione dihydrochloride; MIT) and its relationship to the transport rate, cellular distribution and interaction with cell membrane were studied. The survival assay showed that MIT was more toxic to trisomic fibroblast lines than to normal cells. Studies of transport kinetics indicated that the amount of drug taken up and extruded by DS cells was diminished, compared to control cells. In contrast, the cellular level of MIT associated with DNA was greater in trisomic than in normal cells. The fluorescence anisotropy measurements of TMA-DPH and 12-AS demonstrated that the fluidity of the polar region of the outer lipid monolayer of DS cell membrane was decreased in comparison with normal cells. MIT treatment decreased fluidity of the inner hydrophobic region of plasma membrane, but only slightly influenced the fluidity of the outer surface of the cell membrane. Finally, we concluded that lowered membrane fluidity, diminished amount of MIT extruded by cells and the enhanced level of the drug associated with DNA could be responsible for the enhanced sensitivity of DS fibroblasts to the MIT treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.