Abstract
In heart failure (HF), ventricular myocardium expresses brain natriuretic peptide (BNP). Despite the association of elevated serum levels with poor prognosis, BNP release is considered beneficial because of its antihypertrophic, vasodilating, and diuretic properties. However, there is evidence that BNP-mediated signaling may adversely influence cardiac remodeling, with further impairment of calcium homeostasis. We studied the effects of BNP on preload-dependent myocardial sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) expression. In rabbit isolated muscle strips stretched to high preload and shortening isotonically over 6 hours, the SERCA/glyceraldehyde phosphate dehydrogenase mRNA ratio was enhanced by 168% (n=8) compared with unloaded preparations (n=8; P<0.001). Recombinant human BNP at a concentration typically found in end-stage HF patients (350 pg/mL) abolished SERCA upregulation by stretch (n=9; P<0.0001 versus BNP free). Inhibition of cyclic guanosine 3',5' monophosphate (cGMP)-phosphodiesterase-5 mimicked this effect, whereas inhibition of cGMP-dependent protein kinase restored preload-dependent SERCA upregulation in the presence of recombinant human BNP. Furthermore, in myocardium from human end-stage HF patients undergoing cardiac transplantation (n=15), BNP expression was inversely correlated with SERCA levels. Moreover, among 23 patients treated with left ventricular assist devices, significant SERCA2a recovery occurred in those downregulating BNP. Our data indicate that preload stimulates SERCA expression. BNP antagonizes this mechanism via guanylyl cyclase-A, cGMP, and cGMP-dependent protein kinase. This novel action of BNP to uncouple preload-dependent SERCA expression may adversely affect contractility in patients with HF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.