Abstract

The analysis of complex physical systems hinges on the ability to extract the relevant degrees of freedom from among the many others. Though much hope is placed in machine learning, it also brings challenges, chief of which is interpretability. It is often unclear what relation, if any, the architecture- and training-dependent learned "relevant" features bear to standard objects of physical theory. Here we report on theoretical results which may help to systematically address this issue: we establish equivalence between the field-theoretic relevance of the renormalization group, and an information-theoretic notion of relevance we define using the information bottleneck (IB) formalism of compression theory. We show analytically that for statistical physical systems described by a field theory the relevant degrees of freedom found using IB compression indeed correspond to operators with the lowest scaling dimensions. We confirm our field theoretic predictions numerically. We study dependence of the IB solutions on the physical symmetries of the data. Our findings provide a dictionary connecting two distinct theoretical toolboxes, and an example of constructively incorporating physical interpretability in applications of deep learning in physics.

Highlights

  • The analysis of complex physical systems hinges on the ability to extract the relevant degrees of freedom from among the many others

  • We report on theoretical results which may help to systematically address this issue: we establish equivalence between the field-theoretic relevance of the renormalization group, and an information-theoretic notion of relevance we define using the information bottleneck (IB) formalism of compression theory

  • We show analytically that for statistical physical systems described by a field theory the relevant degrees of freedom found using IB compression correspond to operators with the lowest scaling dimensions

Read more

Summary

Introduction

The analysis of complex physical systems hinges on the ability to extract the relevant degrees of freedom from among the many others. We report on theoretical results which may help to systematically address this issue: we establish equivalence between the field-theoretic relevance of the renormalization group, and an information-theoretic notion of relevance we define using the information bottleneck (IB) formalism of compression theory.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.