Abstract
Content-based image retrieval (CBIR) has become one of the most active research areas in the past few years. Many visual feature representations have been explored and many systems built. While these research efforts establish the basis of CBIR, the usefulness of the proposed approaches is limited. Specifically, these efforts have relatively ignored two distinct characteristics of CBIR systems: (1) the gap between high-level concepts and low-level features, and (2) the subjectivity of human perception of visual content. This paper proposes a relevance feedback based interactive retrieval approach, which effectively takes into account the above two characteristics in CBIR. During the retrieval process, the user's high-level query and perception subjectivity are captured by dynamically updated weights based on the user's feedback. The experimental results over more than 70000 images show that the proposed approach greatly reduces the user's effort of composing a query, and captures the user's information need more precisely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.