Abstract
This paper presents an active release method of microobject for the improvement of the position accuracy after releasing by using 3D high speed motions of an end effector. In the micro manipulation, the release task is the challenge work due to adhesion forces. To overcome the adhesion force and to place microobject accurately on the desired location, in this paper, we propose a high speed motion by analyzing dynamic model of manipulated end effector and attached microbeads. Two fingered microhand driven by DC motors and PZT actuators is utilized for this paper. Parallel mecahnism with three PZT actuators was used for making 3D motion at high speed. To generatge high acceleration of end effector, many researchers applied simple vibration by using an additional PZT actuator. In our research, 3D high speed motion with large amplitude was achieved by only using a compacted parallel mechanism. To verify the advantage of the proposed motion, we compare five motions, 1D motions (X, Y, and Z direction) and circular motions (clockwise and counterclockwise direction), by changing the frequency and moving distance of the end effector. From these results of experiments, we conclude that the circular motion can detach microobjects with high placing accuracy after release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.