Abstract

Ball milling the mixture of Mg(NH2)2, LiH and NH3BH3 in a molar ratio of 1:3:1 results in the direct liberation of 9.6 wt% H2 (11 equiv. H), which is superior to binary systems such as LiH–AB (6 equiv. H), AB–Mg(NH2)2 (No H2 release) and LiH–Mg(NH2)2 (4 equiv. H), respectively. The overall dehydrogenation is a three-step process in which LiH firstly reacts with AB to yield LiNH2BH3 and LiNH2BH3 further reacts with Mg(NH2)2 to form LiMgBN3H3. LiMgBN3H3 subsequently interacts with additional 2 equivalents of LiH to form Li3BN2 and MgNH as well as hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.