Abstract

The correlation function Monte Carlo method for calculating ground and excited state properties is extended to complex Hamiltonians and used to calculate the spectrum of neutral helium in a wide range of magnetic fields, a system of particular interest in astrophysics. Correlation functions in imaginary time are evaluated for a set of trial functions over a random walk whose dynamics is governed by the imaginary-time Schr\"odinger equation. Estimates of the exact energy spectrum and other expectations are made by diagonalizing the matrix of correlation functions. Using the exact results of this ``released-phase'' Monte Carlo approach, we assess the accuracy of the fixed-phase quantum Monte Carlo and Hartree-Fock methods for the helium atom in strong magnetic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.