Abstract

The glycan moiety of glycoproteins plays key roles in various biological processes. However, there are few versatile methods for releasing, separating, and recovering monomeric reducing N-glycans for further functional analysis. In this study, we developed a new method to achieve the release, separation, and recovery of monomeric reducing N-glycans using enzyme E (Pronase E) combined with 9-chloromethyl chloroformate (Fmoc-Cl) and glycosylasparaginase (GA). Ovalbumin, ribonuclease B, ginkgo, and pine nut glycoproteins were used as materials and sequentially enzymatically hydrolyzed with Pronase E, derivatized with Fmoc-Cl, and enzymatically hydrolyzed with GA. The products produced by this method were then detected by electrospray ionization mass spectrometry, high-performance liquid chromatography (HPLC), and online hydrophilic interaction chromatography (HILIC-MS) separation. The results showed that all N-glycans with essentially one amino acid obtained with Pronase E were labeled with Fmoc-Cl and could be efficiently separated and detected via HPLC and HILIC-MS. Finally, the isolated Asn-glycan derivatives were digested with GA, enabling the recovery of all monomeric reducing N-glycans modified by core α-1,3 fucose. This method was simple, inexpensive, and broadly applicable and could therefore be quite important for analysis of the structure-function relationships of glycans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.