Abstract

Colorectal cancer (CRC) is the third most common cancer worldwide. To date, no non-invasive and specific biomarkers have been identified for the diagnosis of CRC. The analysis of volatile organic compounds (VOCs) is attracting increasing attention and provides the possibility of a non-invasive diagnosis. Solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) have been used to analyze the VOCs released from the headspace gas of LS174T (Dukes' type B colorectal adenocarcinoma) cells, arsenic trioxide (ATO)-treated LS174T cells and the blood from tumor-bearing mice. The data were processed using principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), which showed that the levels of decanal, 2,4-dimethyl- heptane, and twelve other metabolites were significantly greater in the headspace gas of the LS174T cells and blood of tumor-bearing mice. Additionally, in vivo experiments indicated that formic acid, ethenyl ester and p-trimethylsilyloxyphenyl-(trimethylsilyloxy)trimethylsilylacrylate were consumed during tumor growth. In conclusion, VOCs such as 1-methoxy-hexane and 2,4-dimethyl-heptane could be useful diagnostic markers for CRC. Further research should focus on the potential metabolic pathways associated with these profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call