Abstract

In Heliothis zea, pupal diapause is not due to a deficiency of the prothoracicotropic hormone (PTTH), as it is in many other insects. However, PTTH is essential for diapause termination and adult development. Removal of the pupal brain 4 hr after larval-pupal ecdysis blocks the insect's ability to initiate adult development. Transplantation of brain neurosecretory cells restores this ability, whereas other tissues such as corpora allata have no effect. In the diapausing pupa, PTTH is released from the brain within 24 hr after larval-pupal ecdysis. Subsequent removal of the brain fails to block the ability for diapause termination, because PTTH potentiates the ability for adult development. Since diapause termination is suppressed in a temperature of 21°C, the bollworm retains the ability to initiate development in 27°C whereas it remains in diapause in 21°C. Diapause continues even though pupae are supplied with additional PTTH via neurosecretory cell transplantation. Ecdysone injection and prothoracic gland-ablation experiments indicate that the prothoracic glands are the source of the prohormone α-ecdysone, and that diapause is maintained by an α-ecdysone deficiency. This evidence, in conjunction with the above results, suggests that PTTH release potentiates prothoracic gland function in the diapausing pupa which is then regulated by a temperature dependent process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.