Abstract

We studied the effects of oxygen-derived free radicals on the ultrastructure of brain cortical slices and the release of fatty acids from phospholipids of crude synaptosomes. Xanthine oxidase, hypoxanthine, and ADP-Fe3+, a free-radical-generating system, caused swelling of cellular processes and mitochondria. The oxygen-derived free radicals also caused the rapid release and accumulation of endogenous polyunsaturated fatty acids (PUFA) from membrane phospholipids as determined by high-performance liquid chromatography (HPLC). Furthermore, [3H]-arachidonic acid was also rapidly released from prelabeled phospholipids concomitant with a decrease in radioactivity in various phospholipid fractions. The radioactivities of neutral lipids including diacylglycerols were unchanged by free radicals. These data indicate that the activation of phospholipase A2 and the release of PUFA may have overt effect on membrane integrity and the subsequent development of cellular injury and brain edema.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call