Abstract

We used fast absorbance spectroscopy to investigate in vivo binding dynamics and electron transfer between plastocyanin (pc) and photosystem I (PSI), and cytochrome (cyt) f oxidation kinetics in Chlamydomonas reinhardtii mutants in which either the binding or the release of pc from PSI was diminished. Under single flash-excitation conditions, electron flow between PSI and the cyt complex was not affected by a 5-fold lowering of the binding affinity of pc to PSI, as induced by a mutation replacing the tryptophan-651 of the PsaA subunit by a serine residue (PsaA-W651S). On the other hand, electron flow from PSI to the cyt b(6)f complex was very sensitive to a 2- to 3-fold decrease in the rate of pc release from PSI, obtained by replacing the glutamic acid residue 613 of the PsaB subunit with glutamine (PsaB-E613N). Thus, our data indicate that under these experimental conditions the release of oxidized pc limits electron transfer between cyt b(6)f complex and PSI in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call