Abstract

Nitrated fatty acids (NO2‐FAs) exhibit a variety of important biological attributes, including a nitric oxide (˙NO) donor and a cell‐signaling molecule. We investigated the mechanisms of fatty‐acid nitration, and the release of ˙NO from NO2‐FAs. NO2‐FAs are formed effectively by the addition of ˙NO2, followed by either hydrogen abstraction or addition of a second NO2. The latter reaction results in a vicinal nitronitrite ester form of FA, which isomerizes into vicinal nitrohydroxy FA via hydronium ion catalysis. The nitrohydroxy FAs exist in equilibria with NO2‐FAs. Nitration of conjugated linoleic acid (cLA) was proved to be significantly more efficient than that of LA. In a nonaqueous environment, release of ˙NO from nitrite ester (ONO‐FA) was facilitated by ˙NO2. Furthermore, the release of ˙NO from NO2‐cLA is the most favorable in the nitrite ester mechanism. In an aqueous environment, the modified Nef reaction was shown to be feasible. In addition, the release of ˙NO from 10‐ and 12‐NO2‐LA involves a larger reaction barrier and is more endergonic than those from 9‐ and 13‐NO2‐LA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.