Abstract

[1] Methane is a strong greenhouse gas, and marine and wetland sediments constitute significant sources to the atmosphere. This flux is dominated by the release of bubbles, and quantitative prediction of this bubble flux has been elusive because of the lack of a mechanistic model. Our previous work has shown that sediments behave as elastic fracturing solids during bubble growth and rise. We now further argue that bubbles can open previously formed, partially annealed, rise tracts (fractures) and that this mechanism can account for the observed preferential release at low tides in marine settings. When this mechanical model is applied to data from Cape Lookout Bight, NC (USA), the results indicate that methanogenic bubbles released at this site do indeed follow previously formed rise tracts and that the calculated release rates are entirely consistent with the rise of multiple bubbles on tidal time scales. Our model forms a basis for making predictions of future bubble fluxes from warming sediments under the influence of climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.