Abstract

As the demand for urban flood prevention and drainage increases, a large number of plastic rainwater facilities are in use. Microplastics will be released inevitably into stormwater systems during aging and hydraulic scouring processes, which could cause potential pollution risk. This study simulated the release behavior of microplastics from three typical plastic rainwater facilities including a rainwater inspection well, rainwater storage module, and rainwater pipe (mainly composed of high-density polyethylene, polypropylene, and polyvinyl chloride, respectively) under the effects of aging and hydraulic scouring. After 15–45 days of UV aging and 72 h of hydraulic scouring, the surfaces of the three facilities were found to exhibit increases in roughness, cracks, folds, and cavities, with the most pronounced changes occurring in the rainwater storage module. As the aging time increased, oxygen-containing functional groups formed and led to carbon chain scission. Fourier transform infrared spectroscopy (FTIR), two-dimensional correlation spectroscopy (2D-COS) and X-ray photoelectron spectroscopy (XPS) of facility surfaces showed that the formation of oxygen-containing functional groups was an important factor affecting the release of microplastics. The amount of microplastics released from the three facilities ranged from 160 to 1905 items/g (microplastics/facilities), following in the order of rainwater inspection well > rainwater storage module > rainwater pipe. The particle size of the released microplastics ranged from 3 to 1363 μm, with 10–30 μm accounting for the greatest proportion of particles, 50.10%. The size of microplastics released from the rainwater inspection well and rainwater storage module increased with the aging degree, while the release from the rainwater pipe decreased. The release behavior depends mainly on the composition of the materials and the aging time. Thus, microplastics can be released from plastic rainwater facilities under suitable conditions. The results can be used to further evaluate microplastic pollution caused by urban rainwater facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.