Abstract
Elevated mercury (Hg) in sedimentary strata are a widely used tracer for assessing the relationship between large igneous province (LIP) activity and global environmental change. A key unknown in applying this proxy is the extent to which Hg was sourced from contact metamorphism of sedimentary rocks during sill intrusions versus gaseous emissions of the magmas themselves. Here, we investigate Hg behaviour during contact metamorphism of shales. We show loss of 80–99% of the sedimentary Hg in contact aureoles in four case studies covering the interactions around dykes, sills and plutons associated the High Arctic LIP (Sverdrup Basin, Canada), the Karoo LIP (South Africa) and the Skagerrak-centred LIP (Oslo Rift, Norway). A combination of geochemical data and thermal modelling around a dyke from the High Arctic LIP shows 33% Hg volatilization in the aureole at 265–300°C. The other cases show similar behaviours with significant lowering of organic-bound Hg, more significantly in the innermost 60% of the contact aureoles. We hypothesize that gaseous Hg is transported out of aureoles during metamorphism, together with CH4 and CO2. Furthermore, we estimate the thermogenic Hg mobilization from Karoo LIP aureoles as 72–192 t per km3 of aureole, which is between 1–3 times the estimated volumetric Hg release from Karoo magmas. When scaling our results to the size of the shale portions of the Karoo Basin affected by the LIP and a timescale of 100 kyr of sill emplacement, the average Hg flux is calculated to have been 78–207 t/y with maximum values up to ∼300 t/y. The pulsed nature of intrusive volcanism suggests that this thermogenic Hg flux could have dominated LIP Hg emissions during periods of their life span. Our results demonstrate that the global Hg cycle can be significantly perturbed following LIP-scale sill emplacement into organic-rich sedimentary rocks and our quantification of the emissions based on source-rock analysis provides important information for independent interpretation of the sedimentary Hg record.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.