Abstract

The ability to monitor ongoing changes in the shape of dendritic spines has important implications for the understanding of the functional correlates of the great variety of shapes and sizes of dendritic spines in central neurons. We have monitored and three-dimensionally reconstructed dendritic spines in cultured hippocampal neurons over several hours of observation in a confocal laser scanning microscope. In the absence of extrinsic stimulation, the dimensions of dendritic spines of 3-week-old cultured neurons did not change to any significant degree over 3-4 hr in the culture dish, unlike the case with younger cultures. Releasing calcium from stores with pulse application of caffeine causes a transient rise of [Ca(2+)](i) in dendrites and spines, monitored with the calcium dye Oregon-green. Application of caffeine to a dendrite imaged with calcein caused a fast and significant increase in the size of existing dendritic spines and could lead to formation of new ones. This effect is mediated by calcium released from the ryanodine-sensitive stores, as application of caffeine in the presence of ryanodine blocked this effect on the morphology of dendritic spines. Thus, release of calcium from stores is sufficient to produce significant changes in the shape of dendritic spines of cultured hippocampal neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.