Abstract

We investigated the release of acetylcholine (ACh) from tissue slices obtained from the nucleus basalis magnocellularis (nbM) of the rat brain. Potassium (35 mM) depolarization produced a 10- to 12-fold increase in the release of endogenous ACh above spontaneous release. Potassium-evoked ACh release was Ca2+ dependent. Injection of the excitotoxin quinolinic acid into the nbM produced a 72.8 +/- 13.0% decrease in spontaneous ACh release and a 60.4 +/- 8.2% decrease in potassium-evoked release. A fourfold increase in ACh release was observed following perfusion of the tissue with 1 mM 3,4-diaminopyridine (3,4-DAP) whereas 10 mM 3,4-DAP caused a sevenfold increase. The increase in ACh release caused by 3,4-DAP was inhibited by tetrodotoxin. Tissue slices accumulated [3H]choline by high-affinity choline uptake and this could be inhibited by hemicholinium-3. These results indicate that ACh can be released from tissue slices of the nbM by a calcium-dependent process and that a part of this release appears to be from the cholinergic neurons of the nbM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call