Abstract

In photosystem II (PSII), the second-lowest oxidation state (S1) of the oxygen-evolving Mn4CaO5 cluster is the most stable, as the radical form of the redox-active D2-Tyr160 is considered to be a candidate that accepts an electron from the lowest oxidation state (S0) in the dark. Using quantum mechanical/molecular mechanical calculations, we investigated the redox potential (E m) of TyrD and its H-bond partner, D2-His189. The potential energy profile indicates that the release of a proton from the TyrD...D2-His189 pair leads to the formation of a low-barrier H-bond. The E m depends on the H+ position along the low-barrier H-bond, e.g., 680 mV when the H+ is at the D2-His189 moiety and 800 mV when the H+ is at the TyrD moiety, which can explain why TyrD mediates both the S0 to S1 oxidation and the S2 to S1 reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call