Abstract

Excision of deoxyribose-phosphate residues from enzymatically incised abasic sites in double-stranded DNA is required prior to gap-filling and ligation during DNA base excision-repair, and a candidate deoxyribophosphodiesterase (dRpase) activity has been identified in E. coli. This activity is shown here to be a function of the E. coli RecJ protein, previously described as a 5'-->3' single-strand specific DNA exonuclease involved in a recombination pathway and in mismatch repair. Highly purified preparations of dRpase contained 5'-->3' exonuclease activity for single-stranded DNA, and homogeneous RecJ protein purified from an overproducer strain had both 5'-->3' exonuclease and dRpase activity. Moreover, E. coli recJ strains were deficient in dRpase activity. The hydrolytic dRpase function of the RecJ protein requires Mg2+; in contrast, the activity of E. coli Fpg protein, that promotes the liberation of 5'-->3'Rp residues from DNA by beta-elimination, is suppressed by Mg2+. Several other E. coli nucleases, including exonucleases I, III, V, and VII, endonucleases I, III and IV and the 5'-->3' exonuclease function of DNA polymerase I, are unable to act as a dRpase. Nevertheless, E. coli fpg recJ double mutants retain capacity to repair abasic sites in DNA, indicating the presence of a back-up excision function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.