Abstract

Amphiphilic polymer carriers (PEG–St–[Formula: see text]) were prepared from cassava starch and their pH response was investigated. First, hydrophobic tapioca starch polymer (St–[Formula: see text]) was prepared with octyl acyl as the hydrophobic group. The hydrophilic group polyethylene glycol (mPEG) was then introduced into the polymer by esterification to produce amphiphilic tapioca starch polymer (PEG–St–[Formula: see text]). Its self-assembly behavior was characterized using fluorescent probes. The morphology of PEG–St–[Formula: see text] was investigated by transmission electron microscopy (TEM). Loading of the anti-cancer drug curcumin was used to assess the delivery and slow-release performance of the amphiphilic tapioca starch polymer. Cumulative drug release was explored at various pH conditions, with the greatest release from drug-loaded micelles being observed under acidic conditions and stable in a neutral environment. These results provide a theoretical basis for the preparation of pH-responsive nanomicelle carriers, and a platform for the preparation of novel amphiphilic starch-based polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.