Abstract

Polymeric porous ultrafine fibers with different structures as drug carrier could be facilely prepared. However, the drug release characteristics and relevant mechanism of different structural porous ultrafine fibers were not well studied. In the present work, different structural Poly-Ether-Sulfone (PES) based porous ultrafine fibers, namely PES, PES/Poly-Ethylene-Glycol (PEG) and PES/Water were prepared by electro-spinning. Curcumin was chosen as drug model loaded in these fibers. Investigation of curcumin release characteristics was carried out by the total immersion in buffer solution. The surface and inner structure of PES based ultrafine fibers were studied by scanning electron microscopy (SEM) in detail. It is found that there is significant difference in the accumulate release amount and release rate with similar structure. About 92.5% of curcumin released within 600 min for PES/PEG ultrafine fibers and only 58.9% of curcumin flowed out from PES with 1000 min. In order to discuss the fact of this phenomenon, the development structure of PES based porous ultrafine fibers was studied with curcumin release. The results indicated that the curcumin release was directly involved with the structure. For PES/PEG, curcumin around the surface layer released in advance. And then, some penetrable structure emerged with PEG dissolving in the buffer solution, which result in larger specific surface area and more embedded curcumin from the interior structure of the ultrafine fibers diffusing out. For the others, curcumin release only through its own pores of ultrafine fibers. Finally, the processing-structure-performance relationship of PES based porous ultrafine fibers were confirmed by the diversity of porosity and contact angle. The research results demonstrate that PES based porous ultrafine fibers have the potential to be used as drug carrier in the drug delivery according to the practical clinical requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.