Abstract
In certain applications, relay terminals can be employed to simultaneously deliver information and energy to a designated receiver and a set of radio frequency (RF) energy harvesters, respectively. In such scenarios, the relay that is preferable for information transmission does not necessarily coincide with the relay that is preferable for energy transfer, since the corresponding channels fade independently. Relay selection thus entails a tradeoff between the efficiency of the information transmission to the receiver and the amount of energy transferred to the energy harvesters. The study of this tradeoff is the subject on which this work mainly focuses. Specifically, we investigate the dependence of the ergodic capacity and the outage probability of the information transmission to the receiver on the amount of energy transferred to the RF energy harvesters. We propose a relay selection policy that yields the optimal tradeoff in a maximum capacity/minimum outage probability sense, for a given energy transfer constraint. We also propose two suboptimal relay selection methods that apply to scenarios with limited availability of channel state information. Additionally, we propose a suboptimal scheme which approximates the optimal scheme for the special case of two relays and facilitates performance analysis. Interesting insights on the aforementioned tradeoffs are unveiled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.