Abstract
This study investigated the biocatalytic performance of immobilized cholesterol oxidase (CHOD) on magnetite-based carbon (MBC) for degrading cholesterol. The results showed that MBC-CHOD exhibited higher activity and good affinity towards substrate compared to free enzyme and other immobilized enzymes. Mass spectra analysis revealed that MBC-CHOD damaged the main structure of cholesterol, benefitting the further biological treatment. The study proposes a Fenton process mechanism by which H2O2 is transferred to free radicals such as ·OH under acidic conditions, promoting further substrate degradation. This suggests that MBC-CHOD has a relay run property leading to high degradation of cholesterol. Molecular docking indicates that cholesterol preferentially binds to TYR-28 residue and LYS-138 residue in CHOD through hydrogen bonds. Overall, MBC-CHOD proved to be a promising candidate for efficient and sustainable cholesterol degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.