Abstract
Bluetooth is a new technology for low-cost, low-power, and short-range wireless communication. By constructing a piconet, Bluetooth device establishes link and communicates with other device in a master–slave manner. Relay is a Bluetooth device that joins two or more piconets and forwards data from one piconet to another, providing multi-hop (or inter-piconet) communication services. In a Bluetooth scatternet, the number of relays and the degree of each relay are factors that significantly affect the performance of entire network. Unnecessary relays raise the difficulty of scheduling, leading to frequent packet loss. Relay switching among several piconets in turns also creates guard time overhead and increases the transmission delay. This study presents an effective protocol that can dynamically adjust the network topology by reducing the unnecessary relays. An efficient scatternet environment thus can be constructed with characteristics of connected, high bandwidth utilization and low maintenance cost. Additionally, a routing protocol is developed to reduce the path length and generate two disjoint routes for any pair of source and destination devices located in different piconets. Experimental results demonstrate that the proposed protocols perform well in terms of route length, bandwidth consumption, and transmission delay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.