Abstract

We study millimeter wave-based ranging of randomly located terminal nodes (TNs) using fixed relay nodes (RNs) deployed around a central node (CN). This setting may correspond to a disaster-relief scenario where the rescuers require positioning information in the absence of a global positioning system (GPS). We derive the Bayesian Cramer-Rao lower bound (BCRLB) for the TNs range estimation from the CN as well as from the RNs in this network using a stochastic geometry framework. Contrary to existing studies, we take the effect of link-blockages into account while deriving the BCRLB, and thereby present a more accurate bound on the ranging error. For the special case of no blockages, we formulate a convex problem for obtaining the optimal relay positions. Our results provide the operator a guideline for initial deployment planning, in terms of number and location of RNs to be deployed in order to achieve an accurate ranging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call