Abstract

In relay assisted Long Term Evolution-Advanced (LTE-A) network, enhanced Node B (eNB) autonomously selects different backhaul sub-frame configurations to adopt traffic variations, which might cause inter-relay interference (IRI) between relay nodes (RNs) in adjacent cells. IRI can happen due to asynchronous transmission between adjacent cells, which results in IRI from the access link to the backhaul link of adjacent relay in the downlink direction and vice versa. This causes severe loss in system capacity and introduces high outage probability. In this article, we consider the IRI problem in a multi-cell relaying system. Previous studies consider the beamforming design for cooperative relay network as a single-cell problem, without taking into account the occurrence of IRI. However, the performance of the RN assisted network is limited by the IRI from adjacent RN. A hybrid zero-forcing and singular value decomposition (ZF-SVD) beamforming technique is proposed to eliminate the IRI. Simulation results show that the proposed scheme out-performs the comparable scheme in both the ergodic capacity and outage probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.