Abstract

This paper aims at proposing a novel satellite quantum key distribution (QKD) system for vehicular networks. Quantum key from a satellite (i.e., a trusted node) is transmitted through a free-space optical (FSO) channel to a high-attitude platform (HAP) using radio-over-FSO (RoFSO) technique. HAP playing a role as a relaying node forwards the key to moving vehicles via millimeter-wave (MMW) channel. Key information generated is encoded on MMW subcarrier using binary phase shift keying (BPSK) signaling and then recovered at the receiver thanks to a dual-threshold detector. We derive the mathematical expressions for security analysis of the proposed QKD system in terms of quantum bit error rate and ergodic secret-key rate taking into account the channel loss and receiver noise. The numerical results confirm the feasibility of the proposed QKD system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call