Abstract

Relaxor-PT based ferroelectric single crystals Pb(Zn₁/₃)Nb(₂/₃)O₃-PbTiO₃ (PZNT) and Pb(Mg₁/₃)Nb(₂/₃)O₃-PbTiO₃ (PMNT) offer high performance with ultra-high electromechanical coupling factors k₃₃ > 0.9 and piezoelectric coefficients d₃₃s > 1500 pC/N. However, the usage temperature range of these perovskite single crystals is limited by T(RT)-the rhombohedral to tetragonal phase transition temperature, which occurs at significantly lower temperatures than the Curie temperature T(C), a consequence of curved morphotropic phase boundaries (MPBs). Furthermore, these <001>-oriented crystals exhibit low mechanical quality Q and coercive fields, restricting their usage in high-power applications. In this survey, recent developments on binary and ternary perovskite relaxor-PT crystal systems are reviewed with respect to their temperature usage range. General trends of dielectric and piezoelectric properties of relaxor-PT crystal systems are discussed in relation to their respective T(C)/T(RT). In addition, two approaches have been implemented to improve mechanical Q, including acceptor dopants, analogous to hard polycrystalline ceramics, and anisotropic domain engineering, enabling low-loss crystals with high coupling for high-power applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.