Abstract

We synthesized lead-free piezoelectric (Bi0.5Na0.5-xKx)TiO3 (BNKT) ceramics using a conventional solid-state reaction method. We have investigated the structural and electrical properties of the materials with x = 0.05 to 0.40. The X-ray diffraction (XRD) analysis suggests that the BNKT ceramics show the transition from rhombohedral to tetragonal structure. The ratio of the tetragonal structure increased continuously in accordance with the increasing composition of x. The sample of x = 0.10 showed a similar ratio between the tetragonal and rhombohedral structures. Frequency-dependent dielectric measurements showed a sort of relaxor properties emerged with increasing x composition, this effect may be interpreted in terms of the formation of polar nano-regions (PNRs) in samples. The value of remnant polarization (Pr) decreases rapidly as x increases beyond the point of x = 0.10 from 25.3 μC/cm2 to 5.9 μC/cm2. On the contrary, as for inverse piezoelectric coefficient (d33*), a higher value of d33* (336 pm/V) at x = 0.10, was observed when compared with x = 0.05 (d33* = 51 pm/V). These results can be explained by the formation of PNRs and their variations with the external applied field. We here propose a possible mechanism showing the effects of dipolar defects, which can be resulted from the K ion substitution on (Bi,Na)TiO3 (BNT) ceramics.

Highlights

  • Piezoelectric materials have a property where, when under mechanical stress, they produce electric potential energy and vice versa

  • We investigate how the relaxor phase evolution varies according to changes in composition by fabricating (Bi0.5 Na0.5-x Kx )TiO3 (BNKT) ceramics, which forms by substituting an A-site ion with a K ion in the BNT structure

  • We present how the ferro- and piezoelectric characteristics vary according to the composition of x

Read more

Summary

Introduction

Piezoelectric materials have a property where, when under mechanical stress, they produce electric potential energy and vice versa. The ER causes a large strain while under an external electric field, as such previous studies have investigated how to change the characteristics of PNRs by using various dopants [11,12].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.