Abstract

Lead-free tetragonal tungsten bronze Sr5LaTi3Nb7O30 ceramics were prepared and the correlation of the relaxor nature and crystal structure was studied using dielectric spectroscopy and powder X-ray diffraction. Three dielectric relaxations were observed below the deviation temperature TD ∼ 330 K. Relaxation I and II followed the Vogel-Fulcher law with the freezing temperatures of 189 K and ∼90 K. Low temperature relaxation III, which was first observed in filled tungsten bronze, followed well the Arrhenius law. Dielectric response becomes static below 50 K. Polarization-field (P-E) hysteresis loops were evaluated from 183 K to 298 K. Pr value of 0.41μC/cm2 was observed at 183 K. Deviation of lattice parameter c from the linear contraction and increasing of tetragonality (c/a ratio) were observed below TD, reflecting the structure change during the formation of polar nanoregions and the following freezing process. Opposite tendency was observed below 100 K for all the lattice parameters, corresponding to relaxation III. Generally, the main dielectric relaxation I and II were attributed to flipping and breathing of polar nanoregions along c axis, while the concerted rotations of the oxygen octahedra in the ab plane were suggested as the origin of relaxation III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.