Abstract

Enhancing the efficiency in energy storage capacitors minimizes energy dissipation and improves device durability. A new efficiency-enhancement strategy for antiferroelectric ceramics, imposing relaxor characteristics through forming solid solutions with relaxor compounds, is demonstrated in the present work. Using the classic antiferroelectric (Pb0.97La0.02)(Zr1-x-ySnxTiy)O3 as model base compositions, Bi(Zn2/3Nb1/3)O3 is found to be most effective in producing the “relaxor antiferroelectric” behavior and minimizing the electric hysteresis. Specifically, a remarkable energy storage efficiency of 95.6% (with an energy density of 2.19 J/cm3 at 115 kV/cm) is achieved in the solid solution 0.90(Pb0.97La0.02)(Zr0.65Sn0.30Ti0.05)O3–0.10Bi(Zn2/3Nb1/3)O3. The validated new strategy, hence, can guide the design of future relaxor antiferroelectric dielectrics for next generation energy storage capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.