Abstract

In myometrium of pigs and rats, though not humans, relaxin appears to mediate an inhibition of spontaneous and oxytocin-induced contractility, presumably acting through a G-protein coupled receptor (RXFP1) to generate cAMP. In humans, circulating relaxin is highest in the first trimester, including the time of implantation, when transitory uterine quiescence could help a blastocyst to implant. We investigated whether relaxin can activate adenylate cyclase in primary human myometrial cells from non-pregnant tissue, and we show that relaxin is able to stimulate the generation of cAMP in a manner, which is dependent upon a tyrosine phosphorylation activity, as in the endometrium. We identified transcripts for the relaxin receptor RXFP1 as full-length variants, though a minor splice variant missing exon 2 was also present in low amounts. These cells also express transcripts encoding RXFP2, the receptor for the closely related hormone, INSL3. Although able to respond to relaxin at high concentrations, this receptor does not appear to function by contributing to the cAMP production in human myometrial cells, nor does INSL3 act as a functional agonist or antagonist of relaxin action. In conclusion, the inability of relaxin to inhibit contractility in human myometrial cells would appear to be due to events downstream of simple cAMP generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.