Abstract

To determine the effects of relaxin, oxytocin, and prostaglandin F2 alpha on progesterone secretion, bovine luteal cells from different stages of gestation were dispersed in Medium 199 with 200 units/ml penicillin, 1.0% kanamycin, 0.5% bovine serum albumin, and 400 units/ml collagenase. Cells (10(5) were cultured in 400 microliters of Dulbecco's modified Eagle's medium and Ham's F-12 medium containing fetal bovine serum and antibiotics, in Falcon multiwell plates, in a humidified environment of 95% O2 and 5% CO2 at 37 degrees C. Cells were cultured for 24 hr without treatment and thereafter with medium-hormone replacement every 24 hr. Progesterone was quantified from unextracted media by radioimmunoassay. Basal progesterone secretion after 24 hr was 1.81 +/- 0.14, 1.76 +/- 0.17, 0.54 +/- 0.49, and 0.57 +/- 0.21 pg/ml per viable luteal cell from 145-, 165-, 185-, and 240-day-old corpora lutea, respectively. Basal progesterone secretion increased (P less than 0.05) with time in culture. Relaxin induced a dose-dependent (greater than 100 ng/ml) increase in progesterone release, compared with the controls. Oxytocin and prostaglandin F2 alpha induced greater release (P less than 0.05) of progesterone than relaxin at all stages of gestation, but progesterone release was dependent on the stage of gestation and the duration in culture. Luteinizing hormone (100 ng/ml) stimulated whereas 17 beta-estradiol (50 ng/ml) inhibited progesterone secretion by luteal cells at all stages of gestation examined. Relaxin obliterated the prostaglandin- and oxytocin-induced progesterone secretion by bovine luteal cells from 145 to 214 days of gestation. Thus, relaxin, cloprostenol, and oxytocin regulate progesterone production by cultured bovine luteal cells, but hormone secretion was dependent on the stage of gestation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call