Abstract

Relaxin, an ovarian polypeptide hormone, is found in the hypothalamic paraventricular nucleus (PVN) which is an important central integrative site for the control of blood pressure and sympathetic outflow. The aim of this study was to determine if superoxide anions modulate the effects of relaxin in the PVN. Experiments were performed in normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Relaxin mRNA and protein, and its receptor, relaxin family peptide receptor 1 (RXFP1) levels in PVN were 3.24, 3.17, and 3.64 times higher in SHRs than in WKY rats, respectively. Microinjection of relaxin-2 into the PVN dose-dependently increased mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA) and heart rate (HR) in both WKY rats and SHRs, although the effects on MAP (16.87 ± 1.99 vs. 8.97 ± 1.48 mm Hg in 100 nmol), RSNA (22.60 ± 2.15 vs. 11.77 ± 1.43 % in 100 nmol) and HR (22.85 ± 3.13 vs. 12.62 ± 2.83 beats/min in 100 nmol) were greater in SHRs. Oxidative stress level was enhanced after relaxin-2 microinjection into the PVN. Pretreatment with superoxide anion scavengers or NADPH oxidase inhibitor blocked, and superoxide dismutase inhibitor potentiated the effects of relaxin-2 on MAP, RSNA and HR. RXFP1 knockdown significantly attenuated the blood pressure of SHRs, and inhibited the increases of atrial natriuretic peptide, brain natriuretic peptide, collagen I, collagen III and fibronectin in the heart of SHRs. These results demonstrated that relaxin is expressed in the PVN, and contributes to hypertension and sympathetic overdrive via oxidative stress. Down-regulation of RXFP1 in the PVN could attenuate hypertension and cardiac remodeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call